

Hilti HAC-V Cast-In Anchor Channel

Submission Folder

Product Information and Data	2
Test Reports	
ETA-11/0006	11
Letters	
Country of Origin	52
Job Reference	53

HAC-V ANCHOR CHANNELS

Product Overview and Datasheet 2022

SELECTOR FOR HAC-V ANCHOR CHANNELS

Туре			HAC-V anchor channels				
			HAC-V 40	HAC-V 50	HAC-V 60	HAC-V 70	
		HBC-C		M12-	-M20		
T-bolt & bolt	type size	HBC-C-N	M12-M16 M12-M20				
material	eteria Cracked concrete						
B B B Uncracked (d concrete					
	European Assessme	n Technical ent (ETA)	•	10 A.	•		
ata	Static 2D						
ical d	Static 3D						
echn	Seismic						
F	Fatigue						
	Fire						
res	Hot-dip g (HDG)	alvanized					
ct featu	Stainless anchor ch	steel A4 nannels	_	_	-	_	
rodu	Tear-out	strip	v	v	4	~	
Δ.	End caps		v	×	4	~	
PROFI softwa	S Anchor (re	Channel		•	/		
_							

ETA & ICC ESR-3520 approved ETA approved ICC ESR-3520 approved

PRODUCT OVERVIEW

Units = mm

¹⁾Approved ICC-ESR 3520 for seismic category A-F

Other Information				
* * * * * * *	ESR-3520	CE		X
European Technical Assessment (ETA)	ICC-ES	CE conformity	PROFIS Anchor Channel software	Small edge distance

International approvals

Approval type	Coverage	Issuing Authority
European Technical Assessment (ETA)	3D static, fatigue tension and fire loads	DIBt Berlin, Germany
ICC evaluation service report (ESR)	3D static and seismic loads	ICC-ES, Whittier CA, USA

PRODUCT FEATURES

Nomenclature of HAC-V

O Channel Type	@ Pro and	Profile type and size Deffective embedment depth Ancho		Anchor channel length [mm]	Material finish
HAC-V	50		106	300	F (HDG)

Examples:
 Channel type
 Profile type/size
 h_{ef}
 Length
 Material finish

HAC-V 50 106/300 F

HAC-V 40

Ordering designation	Length, Ich	Standard embedment depth, hef	Sales pack quantity	Item number
AChannel HAC-V 40 91/200 F	200 mm	91 mm	1 pc	2331508 ¹⁾
AChannel HAC-V 40 91/250 F	250 mm	91 mm	1 pc	2331509 ¹⁾
AChannel HAC-V 40 91/300 F	300 mm	91mm	1 pc	2331510 ¹⁾
AChannel HAC-V 40 91/350 F	350 mm	91 mm	1 pc	2331511 ¹⁾
AChannel HAC-V 40 91/400 F	400 mm	91 mm	1 pc	2331512 ¹⁾
AChannel HAC-V 40 91/450 F	450 mm	91 mm	1 pc	2331513 ¹⁾
AChannel HAC-V 40 91/550 F	550 mm	91 mm	1 pc	2331497 ¹⁾
AChannel HAC-V 40 91/800 F	800 mm	91 mm	1 pc	2331498 ¹⁾
AChannel HAC-V 40 91/1050 F	1050 mm	91 mm	1 pc	2331499 ¹⁾
AChannel HAC-V 40 91/1300 F	1300 mm	91 mm	1 pc	2331500 ¹⁾
AChannel HAC-V 40 91/1550 F	1550 mm	91 mm	1 pc	2331501 ¹⁾
AChannel HAC-V 40 91/1800 F	1800 mm	91 mm	1 pc	2331502 ¹⁾

¹⁾ This is a non-stock item. For detailed lead time information please contact your Hilti representative.

HAC-V 50

Ordering designation	Length, Ich	Standard embedment depth, hef	Sales pack quantity	Item number
AChannel HAC-V 50 106/250 F	250 mm	106 mm	1 pc	2331536 ¹⁾
AChannel HAC-V 50 106/300 F	300 mm	106 mm	1 pc	2331537 ¹⁾
AChannel HAC-V 50 106/350 F	350 mm	106mm	1 pc	2331538 ¹⁾
AChannel HAC-V 50 106/400 F	400 mm	106 mm	1 pc	2331539 ¹⁾
AChannel HAC-V 50 106/450 F	450 mm	106 mm	1 pc	2331540 ¹⁾
AChannel HAC-V 50 106/550 F	550 mm	106 mm	1 pc	2331541 ¹⁾
AChannel HAC-V 50 106/610 F	610 mm	106 mm	1 pc	2331542 ¹⁾
AChannel HAC-V 50 106/800 F	800 mm	106 mm	1 pc	2331543 ¹⁾
AChannel HAC-V 50 106/1050 F	1050 mm	106 mm	1 pc	2331544 ¹⁾
AChannel HAC-V 50 106/1300 F	1300 mm	106 mm	1 pc	2331545 ¹⁾
AChannel HAC-V 50 106/1550 F	1550 mm	106 mm	1 pc	2331546 ¹⁾
AChannel HAC-V 50 106/1800 F	1800 mm	106 mm	1 pc	2331547 ¹⁾
AChannel HAC-V 50 106/2050 F	2050 mm	106 mm	1 pc	2331548 ¹⁾
AChannel HAC-V 50 106/2300 F	2300 mm	106 mm	1 pc	2331549 ¹⁾
AChannel HAC-V 50 106/2550 F	2550 mm	106 mm	1 pc	2331550 ¹⁾
AChannel HAC-V 50 106/2800 F	2800 mm	106 mm	1 pc	2331551 ¹⁾
AChannel HAC-V 50 106/3050 F	3050 mm	106 mm	1 pc	2331552 ¹⁾

¹⁾ This is a non-stock item. For detailed lead time information please contact your Hilti representative.

HAC-V 60

Ordering designation	Length, Ich	Standard embedment depth, hef	Sales pack quantity	Item number
AChannel HAC-V 60 149/300 F	300 mm	149 mm	1 pc	2331576 ¹⁾
AChannel HAC-V 60 149/350 F	350 mm	149 mm	1 pc	2331577 ¹⁾
AChannel HAC-V 60 149/400 F	400 mm	149mm	1 pc	2331578 ¹⁾
AChannel HAC-V 60 149/450 F	450 mm	149 mm	1 pc	2331579 ¹⁾
AChannel HAC-V 60 149/550 F	550 mm	149 mm	1 pc	2331580 ¹⁾
AChannel HAC-V 60 149/610 F	610 mm	149 mm	1 pc	2331581 ¹⁾
AChannel HAC-V 60 149/1050 F	1050 mm	149 mm	1 pc	2331582 ¹⁾

¹⁾ This is a non-stock item. For detailed lead time information please contact your Hilti representative.

HAC-V 70

Ordering designation	Length, Ich	Standard embedment depth, hef	Sales pack quantity	Item number
AChannel HAC-V 70 175/300 F	300 mm	175 mm	1 pc	2331584 ¹⁾
AChannel HAC-V 70 175/350 F	350 mm	175 mm	1 pc	2331585 ¹⁾
AChannel HAC-V 70 175/400 F	400 mm	175mm	1 pc	2331586 ¹⁾
AChannel HAC-V 70 175/450 F	450 mm	175 mm	1 pc	2331587 ¹⁾
AChannel HAC-V 70 175/550 F	550 mm	175 mm	1 pc	2331588 ¹⁾
AChannel HAC-V 70 175/610 F	610 mm	175 mm	1 pc	2331589 ¹⁾
AChannel HAC-V 70 175/800 F	800 mm	175 mm	1 pc	2331590 ¹⁾
AChannel HAC-V 70 175/1050 F	1050 mm	175 mm	1 pc	2331591 ¹⁾

¹⁾ This is a non-stock item. For detailed lead time information please contact your Hilti representative.

Hilti Anchor Channel Specification

HAC	HAC-V 40	HAC-V 50	HAC-V 60	HAC-V 70
Material of channel	Carbon steel S235,	Carbon steel S235,	Carbon steel S235,	Carbon steel S235,
	EN 10025-2	EN 10025-2	EN 10025-2	EN 10025-2
Coating thickness	Hot-dip gal. ≥ 55µm,	Hot-dip gal. ≥ 55µm,	Hot-dip gal. ≥ 70µm,	Hot-dip gal. ≥ 70µm,
	EN ISO 1461:	EN ISO 1461:	EN ISO 1461:	EN ISO 1461:
	2009 -10	2009 - 10	2009 - 10	2009 - 10
Channel width	40.9mm	41.9mm	43.4mm	45.4mm
Channel height	28mm	31mm	35.5mm	40mm
Recommended tensile load ⁽¹⁾	Depends on different	Depends on different	Depends on different Edge distance c1	Depends on different Edge distance c1
Recommended shear load ⁽¹⁾	[mm]	[mm]	[mm]	[mm]

⁽¹⁾ Please refer to P.8-11 to find specific edge distance to get the suitable tensile load and shear load.

HBC-C & HBC-C-N

	Grade 8.8	Stainless steel, A4-50		
Material of T Bolt	Carbon steel grade 8.8, EN ISO 898-1	Stainless steel, A4-50		
Coating thickness	hot-dip gal. ≥ 45µm, ISO 1461:1999	N/A		

Static and quasi-static loading

All data in this section applies to:

- Correct setting (See setting instruction), 2 bolts were adapted in the design
- No edge distance and spacing influence
- No influence of bolt type and diameter
- Decisive failure mode local flexure of channel lips
- Shear load applied perpendicular to the longitudinal axis of the channel
- Highlight no influence of concrete grading
- Parallel paired channel spacing = 2 x edge distance c 1
- Concrete C35/45, Cylindrical strength = 35N/mm2, Cubic strength = 45N/mm2, Consult Hilti technical advisory for loading with different concrete grade

Effective anchorage depth

Anchor channel type				HAC-V			
Anchor channel size			40	50	60	70	
Minimum effective anchorage depth ^{a)}	h _{ef,min}	[mm]	91	71	148	175	
Minimum thickness of concrete member ^{a) b)}	h _{min}	[mm]	105	90	168	196	

a) HAC-V 50, 60, 70 and HAC-V-T 50, 70 are produced with different length of anchors and as well available with increased embedment depth, which will lead to increased concrete cone capacity. Additional information is presented in Setting details;

b) Minimum thickness of concrete member depends on the minimum edge distance. Additional information is presented in Setting details

Recommended load

Anchor channel type			HAC-V				
Anchor channel size			40	50	60	70	
Tension	N ⁰ Rd,s,I	[kN]	20,8	27,2	36,5	47,3	
Shear	$V^0{}_{\text{Rd},\text{s},\text{l}}$	[kN]	24,8	36,5	55	67,3	
Longitudinal Shear HBC-C-N	M16		13,1	13,1	13,1	13,1	

Note: Values shown in table above are representing only limited amount of the possible failure modes and might be used only for comparison of different products. For detailed design and project basis recommended load of fixing point please use Hilti PROFIS Anchor Channel software, consult ETA-11/0006 or contact Hilti Engineering team.

Hilti Anchor Channel T-Head Bolt Basic Loading Data

- All data for HBC-C & HBC-C-N Bolt given in this section according ETA-11/0006, issue 2011-02-08 and follow the design code CEN/TS
- The recommended load with overall global safety factor, γ_{global} , 3. Loads may vary according to the safety factor requirement from national regulations.
- For detail design, please see HAC design manual

HBC-C & HBC-C-N Bolt Characteristic Resistance (single bolt)

			(
		M12	M16	M20	Material
Tension	[kN]	67.4	125.6	174.3	0 0
Shear	[kN]	33.7	62.8	101.7	0.0
Tension	[kN]	42.2	78.5	122.5	A 4 50
Shear	[kN]	25.3	47.1	73.5	A4-50

Recommended Load (single bolt)

		M12	M16	M20	Material
Tension	[kN]	22.5	41.9	65.3	0 0
Shear	[kN]	11.2	20.9	32.6	0.0
Tension	[kN]	14.1	26.2	40.8	A 4 50
Shear	[kN]	8.4	15.7	24.5	A4-50

L $_{req.}$ = t $_{lip}$ + t $_{fix}$ + t $_{nut}$ + t $_{washer}$ + 3 - 5 no. of threads *

* - 3 - 5 nos. of thread is the common practice.

Model	t _{lip} [mm]
HAC-V 40	4.5
HAC-V 50	5.3
HAC-V 60	6.3
HAC-V 70	7.4

Washer	t _{washer} [mm]
M12	~ 3
M16	~ 4
M20	~ 6

Nut	t _{nut} [mm]
for M12	9
for M16	14
for M20	17

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0006 of 24 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

Deutsches Institut für Bautechnik

Hilti anchor channels (HAC) with channel bolts (HBC)

Anchor channels

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

F

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Hilti Werke

40 pages including 3 annexes which form an integral part of this assessment

EAD 330008-04-0601, Edition 06/2022

ETA-11/0006 issued on 27 September 2019

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0006 English translation prepared by DIBt

Page 2 of 40 | 24 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 40 | 24 October 2022

Specific Part

1 Technical description of the product

The Hilti anchor channel (HAC) with channel bolts (HBC) is a system consisting of V-shaped channel profile of carbon steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Hilti channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1 and C2
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1 and C2
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N^0_{Rk,s,l}$; $s_{l,N}$ see Annex C1 and C2
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C9
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex B3 $M_{Rk,s,flex}$ see Annex C1 and C2
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B5
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3 and C4
- Resistance to concrete cone failure	h_{ef} see Annex B3 and B4 $k_{cr,N}$; $k_{ucr,N}$ see Annex C3 and C4
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} ; c_{min} ; h_{min} see Annex B3 and B4
- Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C3 and C4
- Resistance to blowout failure - bearing area of anchor head	A_h see Annex A4

European Technical Assessment

ETA-11/0006

English translation prepared by DIBt

Page 4 of 40 | 24 October 2022

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C9
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C10
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V^0_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C5 and C6
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C7
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C7
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C5 and C6
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C5 and C6
- Resistance to concrete pry-out failure	k_8 see Annex C7
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C7
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C8
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	$\Delta N_{Rk,s,0,n}$ $(n = 1 \text{ to } n = \infty)$ see Annex C11
 Fatigue limit resistance to steel failure of the whole system (test method B) 	$\Delta N_{Rk,s,0,\infty}$ see Annex C12
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	$\Delta N_{Rk,c,0,n}$; $\Delta N_{Rk,p,0,n}$ ($n = 1$ to $n = \infty$) see Annex C12
- Fatigue limit resistance to concrete related failure (test method B)	$\Delta N_{Rk,c,0,\infty}$; $\Delta N_{Rk,p,0,\infty}$ see Annex C12

European Technical Assessment

ETA-11/0006

English translation prepared by DIBt

Page 5 of 40 | 24 October 2022

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
 Resistance to steel failure under seismic tension loading (seismic performance category C1) 	$N_{Rk,s,a.eq}$; $N_{Rk,s,c.eq}$; $N^0_{Rk,s,l.eq}$; $N_{Rk,s.eq}$; $M_{Rk,s,flex.eq}$ see Annex C13 and C16
 Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1) 	$V_{Rk,s.eq}$; $V_{Rk,s,l,y.eq}$; $V_{Rk,s,c,y.eq}$; $V_{Rk,s,a,y.eq}$ see Annex C14 and C16
 Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1) 	$V_{Rk,s,l,x.eq}$; $V_{Rk,s,a,x.eq}$; $V_{Rk,s,c,x.eq}$ see Annex C14 and C15
Characteristic resistance under static and quasi-static tension and/or shear loading	
- Displacements (static and quasi-static load)	$δ_{N0}$; $δ_{N∞}$ see Annex C5 $δ_{V,y,0}$; $δ_{V,y,∞}$; $δ_{V,x,0}$; $δ_{V,x,∞}$ see Annex C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C17 and C18

3.3 Other essential characteristics

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 24 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller

Z62194.22

Page 6 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Page 7 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Page 8 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

HBC-C

8.8F

(e.g. HBC-C 8.8F)

= Hot dip galvanized

her

= Steel grade

△ W.T

= Channel bolt type (see Table 4)

Table 1: Anchor marking (identification letter) and relative minimum effective embedment depth										ı	
Anchor channel		HAC-V-T 30	HAC-V 35	HA 4	C-V 0	HAC 5	-V(-T) 0	HA 6	C-V 0	HAC-' 7(V(-T))
Min. effective embedment depth	[mm]	68	91	91	110	71	106	148	183	175	295
Anchor marking		z	а	а	b	с	е	f	n	k	I

Marking of the Hilti channel bolt: HBC-X-(N) YZ

- HBC = Identifying mark of the manufacturer (Hilti Bolt Channel) = Type of channel bolt Х = Additional marking for notching bolt Ν = Steel grade Y Ζ
 - = Corrosion class

Anchor Channels

HAC-30, HAC-V-T 30 (serrated)

С

F

8.8

HAC-40, HAC-50, HAC-60, HAC-70, HAC-V 35, HAC-V 40, HAC-V 50, HAC-V 60, HAC-V 70

HAC-T 50, HAC-T 70, HAC-V-T 50, HAC-V-T 70 (serrated)

tch

bch

do

Table 2: Dimensions of channel profile

Anchorshannal	b ch	h _{ch}	t ch	d _{ch}	f	ly		
Anchor channel		[mm]						
HAC-30, HAC-V-T 30	41,3	25,6	2,00	22,3	7,5	15349		
HAC-V 35, HAC-40, HAC-V 40	40,9	28,0	2,25	19,5	4,5	21463		
HAC-50, HAC-V 50	41,9	31,0	2,75	19,5	5,3	33125		
HAC-T50, HAC-V-T 50	41,9	31,0	2,75	19,5	5,2	32049		
HAC-60, HAC-V 60	43,4	35,5	3,50	19,5	6,3	57930		
HAC- 70, HAC-V 70	45,4	40,0	4,50	19,5	7,4	95457		
HAC-T70, HAC-V-T70	45,4	40,0	4,50	19,5	7,1	92192		

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Anchor channels (HAC) Annex A3

HAC-V Cast-In Anchor Channel

Deutsches Institut für Bautechnik

Anchenchennel	da	dh	th	min la	Head area An
Anchor channel		[mm ²]			
HAC-30, HAC-V-T 30	5,4	11,5	2,0	44,4	89
HAC-V 35, HAC-40, HAC-V 40	7,2	17,5	3,0	66,0	209
HAC-50, HAC-V 50	9,0	19,5	3,5	78,5	258
HAC-T50, HAC-V-T 50	9,0	19,5	3,5	78,5	258
HAC-60, HAC-V 60	9,0	19,5	4,5	117,0	258
HAC- 70, HAC-V 70	10,9	23,0	5,0	140,0	356
HAC-T70, HAC-V-T70	10,9	23,0	5,0	140,0	356

HAC with bolted anchor

HAC-V with bolted anchor

welded anchor

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Anchor channels (HAC) Annex A4

Channel bolts

Table 4: Dimensions of channel bolt

	Channel			Dimer	nsions	;	HBC-B	HBC-C-E
Anchor	bolt	Steel	b1	b 2	k	d	Single groove	Single groove
onamer	type	gruue		[m	ım]		for marking the position	for marking the position
HAC- 30		4.6,	10.0	04.0	0.0	10		
HAC-V-T 30	пвс-в	A4-50	19,0	34,0	9,2	12		
HAC-40			14,0		10,4	12		
HAC-50 HAC-V 35 HAC-V 40 HAC-V 50	HBC-C-E	4.6, 8.8, A4-50	17,0	33,0	13,4	16		Ik Ik
HAC-40			110		10.1	10	b1 b2	b_1 b_2
HAC-50		4.6,	14,0		10,4	12		
HAC-60	нвс-с	8.8, A4-50		33,0	11,4	16	Single groove	Double groove
HAC-V 35		o tobal non any	18,5		13,9	20	for marking the position	for marking the position d
HAC-V 40						12	d d	
HAC-V 60	HBC-C-N	8.8	18,5	33,0	11,4	16		
HAC-V 70					13,9	20		
HAC-T 50						12		
HAC-T 70	НВС-Т	8.8	18,5	35,4	12,0	16		ik sin
HAC-V-T 70						20	b. b2	b ₁ b ₂

¹⁾ Material properties according to Annex A5

Table 5: Steel grade and corrosion protection

Channel Bolt	Carbo	Stainless steel ²⁾	
Steel grade	4.6	8.8	A4-50
fuk [N/mm²]	400	800 / 830 ²⁾	500
fyk [N/mm ²]	240	640 / 660 ²⁾	210
Corrosion protection		R	

¹⁾ Material properties according to Annex A5

2) Material properties according to EN ISO 898-1:2013

3) Electroplated

⁴⁾ Hot dip galvanized

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Channel bolts (HBC) Annex A5

d

HBC-T

Single groove for marking the position

0		Carbon steel		Stainless steel	
Component	Material properties	Coat	ting	Material properties	
1	2a	2b	2c	3	
Channel Profile	Carbon steel according to EN 10025-2: 2019	Hot dip galvani. Hot dip galvani. according to EN	-		
Rivet	Carbon steel	Hot dip galvani according to EN	-		
Anchor	Carbon steel	Hot dip galvani according to EN	-		
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated ≥ 8 µm according to DIN EN ISO 4042: 2018	Hot dip galvanized ≥ 45 μm ⁵⁾ according to EN ISO 1461: 2009	Steel grade 50 according to EN ISO 3506-1: 2020 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439	
Plain washer ³⁾ according to EN ISO 7089: 2000 and EN ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated ≥ 8 µm	Hot dip galvanized ≥ 45 µm ⁵⁾	Hardness class A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439	
Hexagonal nut according to EN ISO 4032: 2012 or DIN 934: 1987-10 ⁴⁾	Property class 8 according to EN ISO 898-2: 2012	Electroplated ≥ 8 µm	Hot dip galvanized ≥ 45 μm ⁵⁾	Property class 70 according to EN ISO 3506-2: 2020 1.4401 / 1.4404 / 1.4571 / 1.4362 /	

¹⁾ For HAC-30F, HAC-V-T 30F, HAC-V 35F, HAC-40F, HAC-V 40F, HAC(-T) 50F and HAC-V(-T) 50F.

 $^{2)}$ For HAC-60F, HAC-V 60F, HAC(-T)70F and HAC-V(-T) 70F.

³⁾ Not in scope of delivery.

⁴⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel.

⁵⁾ Hot dip galvanized according to EN ISO 1461: 2009.

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Materials

Annex A6

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension and shear perpendicular to the longitudinal axis of the channel for HAC and HAC-V in combination with HBC-C and HBC-C-E as well as static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for HAC and HAC-V in combination with HBC-B, HBC-C-N and HAC-T and HAC-V-T in combination with HBC-T.
- Fatigue cyclic tension loads.
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1).
- Fire exposure: only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000.
- Strength classes C12/15 to C90/105 according to EN 206-1: 2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A6, Table 6, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A6, Table 6, column 2c and 3).
- According to EN 1993-1-4:2006+A2:2015 relating to corrosion resistance class CRC III (channel bolts, washers and nuts made of stainless steel number 1.4401, 1.4404, 1.4571, 1.4362 und 1.4578 according to Annex A6, Table 6, column 3).
- According to EN 1993-1-4:2006+A2:2015 relating to corrosion resistance class CRC IV (channel bolts, washers and nuts made of stainless steel number 1.4439 according to Annex A6, Table 6, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of
 the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as seismic loading (performance category C1) and fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", May 2021 or EN 1992-4: 2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", October 2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 7 and 8 as well as Annex B4, Table 9 are generated including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the installation instructions given in Annexes B7, B8, B9, B10 and B11.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B8, B9, B10 and B11) rectangular to the channel axis.
- The required installation torques given in Annex B5 must be applied and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use Specifications

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Min. effective embedment depth	h _{ef,min}		68	91	106	106	148	175	175	
Min. spacing	Smin		50	50 100						
Maximum spacing	Smax		250							
End spacing	x	Ē				25				
Min. channel length	I _{min}	<u>m</u>	100			15	50			
Min edge distance	Cmin				50			75		
Minimum thickness of			80	105	125	125	168	196	196	
concrete member	min		$h_{ef} + t_h + c_{nom}^{1}$							

¹⁾ c_{nom} according to EN 1992-1-1:2004 + AC: 2010

Table 8: Installation parameters for anchor channel HAC-V

Anchor channel			HAC-V-T 30	HAC-V 35	НАС	HAC-V 40		
Min. effective embedment depth	h _{ef,min}	68 91 9		68 91				
Min. spacing	Smin		50	1				
Maximum spacing	S _{max}		250					
End spacing	x	[mm]	25					
Min. channel length	I _{min}	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[100	1	50			
Min edge distance	Cmin		50					
Minimum thickness	h		80	105	105	125		
member	nmin			$h_{ef} + t_h + c_{nom}^{1)}$				

¹⁾ c_{nom} according to EN 1992-1-1:2004 + AC: 2010

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for anchor channels (HAC) and channel bolts (HBC)

Anchor channel			H	HAC-V((-T) 50		HAC	-V 60	HAC-\	/(-T) 7
Min. effective embedment depth	h ef,min			71		106	148	183	175	29
Min. spacing	Smin		100	1	50	100		1	00	
Maximum spacing	S _{max}						25	50		
End spacing	x	[mm]					25			
Min. channel length	I _{min}] [[[[[[[[150	20	00	150		1	50	
Min edge distance	Cmin		50	50	100	50	75	63,5	75	63
Minimum thickness of concrete	h _{min}		125	125	90	125	168	400	196	40
(2)										
		•	s			4	Scho			
Table 10: Minimum s	spacing	for cha	s nnel boli	• • • * *		~	Scoo			
Table 10: Minimum s Channel bolt	spacing	for cha	s nnel boli	ts	M10	M12	2 M1	6 M	20	
Table 10: Minimum spacing between channel bolt Minimum spacing between channel bol cobo = center to center space	spacing ts pacing b	for char Scbo,min petween	s nnel boli [mm] channel	ts	W10 50 Scbo,min =	M12 60 = 5d)	Scto Scto	6 M	20 20	
Table 10: Minimum s Channel bolt Minimum spacing between channel bol cbo = center to center s	spacing ts pacing b	for chai Scbo,min	s nnel boli [mm] channel	ts bolts (s	W10 50 Scbo,min =	M12 60 = 5d)	2 M1 80	6 M	20 20	
Table 10: Minimum s Channel bolt Minimum spacing between channel bol cbo = center to center s	spacing ts pacing b	for chai Scbo,min Detween	s nnel boli [mm] channel	ts bolts (s	VIIO 50 Sebo,min =	M12 60 = 5d)	2 M1 80	6 M	20 D0	

Table 11: Required installation torque Tinst for HBC-B

Channel bolt		T _{inst} [Nm] ¹⁾					
		General Tinst,g	Steel-steel contact Tinst,s				
		HAC-30, HAC-V-T 30	HAC-30, HAC-V-T 30				
M10	4.6, A4-50	15	15				
M12	4.6, A4-50	25	25				

Table 12: Required installation torque Tinst for HBC-C and HBC-C-E

		Tinst [Nm] ¹⁾								
			Gener	ral T _{inst,g}		Steel-steel contact Tinst,s				
Cha	nnel bolt	HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	
M10	4.6, A4-50			15			1	5		
	8.8			15		48				
M12	4.6, A4-50		:	25		25				
	8.8		:	25		75				
MAG	4.6, A4-50		(60		60				
	8.8 60					185				
Mag	4.6, A4-50	4.6, A4-50 70 105 120			120	120				
10120	8.8	70	105		120		3	20		

Table 13: Required installation torque Tinst for HBC-C-N

		Tinst [Nm] ¹⁾										
			Gener	al T _{inst,g}		Steel-steel contact Tinst,s						
Cha	nnel bolt	HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-V35 HAC-50 HAC-60 HAC-60 HAC-40 HAC-V 50 HAC-V 60 HAC-		HAC-70 HAC-V 70				
M12	8.8		-	75			7	'5				
M16	8.8	185					185					
M20	8.8	-		320		- 320						

Table 14: Required installation torque Tinst for HBC-T

		T _{inst} [Nm] ¹⁾								
Channel bolt		Gener	al T _{inst,g}	Steel-steel contact Tinst,s						
		HAC-T50	HAC-T70	HAC-T50	HAC-T70					
		HAC-V-T50	HAC-V-T70	HAC-V-T50 HAC-V-T70						
M12	8.8		75	75						
M16	8.8	1	00	185						
M20	8.8	1	20	320						

¹⁾ T_{inst} must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC)

Page 17 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

General: The fixture is in contact with the channel fixture is in contact with the channel the profile and the concrete surface an

<u>Steel-steel contact:</u> The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel part (e.g. washer).

Key

- 1 washer
- 2 fixture
- 3 gap
- 4 suitable steel part

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC)

Page 18 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Page 19 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC-B)

Page 20 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC-C and HBC-C-E)

Page 21 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC-C-N)

Page 22 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Ancho	or							
Characteristic resistance	N _{Rk,s,a} [kN]	18,2	33,1	52,5	52,5	52,5	76,3	76,3
Partial factor	γMs ¹⁾				1,8			
Steel failure: Conne	ection bet	ween anch	or and cha	annel				
Characteristic resistance	N _{Rk,s,c} [kN]	18,2	25,0	35,0	35,0	50,1	71,0	71,0
Partial factor	γMs,ca ¹⁾				1,8			
Steel failure: Local	flexure of	f channel li	ps					
Characteristic spacing of channel bolts for N _{Rk,s,I}	S _{I,N} [mm]	83	82	84	84	87	91	91
Characteristic resistance	N ⁰ _{Rk,s,I} [kN]	19,9	25,0	35,0	35,0	50,1	71,0	71,0
Partial factor	γ _{Ms,I} ¹⁾		1		1,8			1

¹⁾ In absence of other national regulations.

Table 16: Characteristic flexural resistance of HAC channel under tension load

Anchor	channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel fa	ilure: Flexi	ure of chanr	nel						
ural nel		НВС-В	755	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
: flexu chan		нвс-с	_ 2)	1136	1596	_ 2)	2187	3160	_ 2)
eristic ce of	M _{Rk,s,flex} [Nm]	НВС-С-Е	_ 2)	1136	1596	_ 2)	_ 2)	_ 2)	_ 2)
aracte istano		HBC-C-N	_ 2)	980	1345	_ 2)	2156	3005	_ 2)
Ch: res		НВС-Т	_ 2)	_ 2)	_ 2)	1596	_ 2)	_ 2)	2975
Partial fa	actor	γMs,flex ¹⁾				1,15			
¹⁾ In abse	nce of othe	r national reg	gulations.		²⁾ No perfo	ormance as	sessed		

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC) under tension load – Steel failure

		HAC-V-T	HAC-V	HAC-V	HAC-V	HAC-V-T	HAC-V	HAC-V	HAC-V-T
Anchor channel		30	35	40	50	50	60	70	70
Steel failure: Anche	or								
Characteristic resistance	N _{Rk,s,a} [kN]	18,2	31,4	31,4	5	5,0	55,0	7	5,0
Partial factor	γMs ¹⁾				1,8				
Steel failure: Conn	ection be	tween anc	hor and c	hannel				_	
Characteristic resistance	N _{Rk,s,c} [kN]	18,2	31,4	31,4	42	2,0	55,0	71,0	75,0
Partial factor	γMs,ca ¹⁾				1,8				
Steel failure: Local	flexure o	f channel	lips						
Characteristic spacing of channel bolts for N _{Rk,s,I}	s _{i,N} [mm]	83	82	82	٤	34	87	ç	91
Characteristic resistance	N ⁰ _{Rk,s,l} [kN]	19,9	31,4	31,4	4	1,0	55,0	7	1,0
Partial factor	γ _{Ms,I} ¹⁾				1,8			•	

¹⁾ In absence of other national regulations.

Table 18: Characteristic flexural resistance of HAC-V channel under tension load

Ancho	r channel	l	HAC-V-T 30	HAC-V 35	HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70
Steel f	ailure: Fle	exure of c	hannel							
atic e of		НВС-В	786	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
ic sta tanci	-	НВС-С	_ 2)	1318	1318	1853	_ 2)	2538	3668	_ 2)
erist esis	M _{Rk,s,flex}	НВС-С-Е	_ 2)	1318	1318	1853	_ 2)	_ 2)	_ 2)	_ 2)
aract ural r		HBC-C-N	_ 2)	1137	1137	1551	_ 2)	2503	3488	_ 2)
Cha		НВС-Т	_ 2)	_ 2)	_ 2)	_ 2)	1853	_ 2)	_ 2)	3455
Partial	factor	$\gamma_{Ms,flex}$ ¹⁾				1,	,15			
¹⁾ In abs	ence of ot	her nation	al regulati	ons.	²⁾	No perform	ance asse	ssed		

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC-V) under tension load – steel failure

Page 25 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Anchor chan	nel		HAC-30	HAC-40	HAC-50	HAC- T50	HAC-60	HAC-70	HAC- T70
Concrete fail	ure: Pull-ou	ıt failure	•		_			_	
Characteristic in cracked co C12/15	resistance ncrete	N _{Rk,p}	8,0	18,8	23,2	23,2	23,2	32,0	32,0
Characteristic in uncracked C12/15	resistance concrete	[kN]	11,2	26,3	32,5	32,5	32,5	44,9	44,9
	C16/20					1,33			
	C20/25					1,67			
	C25/30					2,08			
	C30/37					2,50			
Factor for	C35/45	 				2,92			
NRk,p – NRk,p(C12/15)·Ψc	C40/50	Υc				3,33			
	C45/55					3,75			
	C50/60					4,17			
	C55/67					4,58			
	≥ C60/75					5,00			
Partial factor		γ _{Mp} = γ _{Mc} ¹⁾				1,5			
Concrete fail	ure: Concre	ete cone	e failure						
Droduct	cracked	k cr,N	7,7	8,0	8,2	8,2	8,6	8,9	8,9
factor k ₁	un- cracked	k ucr,N	11,0	11,5	11,7	11,7	12,3	12,7	12,7
Partial factor		<u>ұ</u> мс ¹⁾				1,5			
Concrete fail	ure: Splittir	ng							
Characteristic distance	edge	C _{cr,sp} [mm]	204	273	318	318	444	525	525
Characteristic	spacing	s _{cr,sp} [mm]	408	546	636	636	888	1050	1050
Partial factor		ΥΜsp = ΥΜc ¹⁾				1,5			
In absence o	f other natio	nal regu	lations.						
ilti anchor o	channels (I	HAC) w	ith chanr	nel bolts (HBC)				
erformance	esistances o	of ancho	r channels	(HAC) und	er tension	load – con	crete	Anne	ex C3

Apr 2025

Anchor cha	annel		HAC-V-T 30	HAC-V 35	HA 4	C-V 10	HAC 5	-V(-T) 50	HA	C-V 60	HAC 7	-V(-T) '0	
Concrete fa	ailure: Pull-ou	t failure											
Characterisi resistance ii concrete C1	tic n cracked 2/15	N _{Rk,p}	8,0	18,8	18	,8	23	,2	23	,2	32	,0	
Characterisi resistance in concrete C1	tic n uncracked 2/15	[kN]	11,2	26,3	26	,3	32	,5	32	,5	44	,9	
	C16/20	_					1,33						
	C20/25	_					1,67						
	C25/30						2,08						
Easter for	C30/37						2,50						
$N_{Rk,p} =$	C35/45						2,92						
NRk,p(C12/15)	C40/50	Ψc					3,33						
·Ψc	C45/55						3,75						
	C50/60	-					4,17						
	C55/67	-		4,58									
	≥ C60/75						5,00						
Partial facto	r	ΥΜp = ΥMc ¹⁾					1,5						
Concrete fa	ailure: Concre	te cone	failure										
Min. effectiv embedment	e depth	h _{ef} [mm]	68	91	91	110	71	106	148	183	175	295	
Product	cracked	k cr,N	7,7	8,0	8,0	8,3	8,9	8,2	8,6	8,9	8,9	9,6	
factor k ₁	un-cracked	k ucr,N	11,0	11,5	11,5	11,8	12,7	11,7	12,3	12,7	12,6	13,7	
Partial facto	r	γ _{Mc} ¹⁾					1,5						
Concrete fa	ailure: Splittin	g			1	1	1	1		1			
Characteris distance	tic edge	C _{cr,sp} [mm]	204	273	273	330	213	318	444	549	525	885	
Characteris	tic spacing	S _{cr,sp} [mm]	408	546	546	660	426	636	888	1098	1050	1770	
Partial facto	r	ΥΜsp = ΥΜc ¹⁾					1,5						
¹⁾ In absence	e of other natio	onal regu	llations.										
Hilti anchc	or channels (HAC) w	vith chann	el bolts	(HBC))							
Performanc Characterist	e ic resistances	or channels	(HAC-V) ເ	under s	hear lo	oad – co	oncrete	,	Ar	nnex C	4		

11,31,73,4anchor chanel and slipnces undeHAC-3023,710,2en anchor	11,3 1,7 3,4 annel, incluc of the anch r shear loa HAC-4 39,6 18,4	14,3 1,1 2,2 ling slip o nor chann d – steel 40 H	14,7 1,7 3,4 f channel bo el in concret failure of an AC-(T) 50 53,6 29.0	18,8 1,1 2,2 It, deforma e. nchor char HAC-6 77,3	26,6 1,0 2,0 ttion of nnel HAC 50 HA	25,2 1,5 3,0 XC-(T) 70
1,7 3,4 anchor cha nel and slip nces unde HAC-30 23,7 10,2 en anchor	1,7 3,4 annel, incluc o of the anch r shear loa HAC-4 39,6 18,4	1,1 2,2 ling slip o nor chann d – steel 40 H	1,7 3,4 f channel bo el in concret failure of ar AC-(T) 50 53,6 29.0	1,1 2,2 It, deforma e. nchor cha HAC-6 77,3	1,0 2,0 tion of nnel HAC 50 HA	1,5 3,0 XC-(T) 70
3,4 anchor cha nel and slip nces unde HAC-30 23,7 10,2 en anchor	3,4 annel, incluc o of the anch r shear loa HAC-4 39,6 18,4	2,2 ling slip o nor chann d – steel 40 H	3,4 f channel bo el in concret failure of a AC-(T) 50 53,6 29.0	2,2 It, deforma e. nchor cha HAC-6 77,3	2,0 Ition of nnel HAC	3,0 AC-(T) 70
anchor cha nel and slip nces unde HAC-30 23,7 10,2 en anchor	nnel, incluc of the anch r shear loa HAC-4 39,6 18,4	ling slip o nor chann d – steel 40 H	f channel bo el in concret failure of a l AC-(T) 50 53,6 29.0	It, deforma e. nchor char HAC-6 77,3	nnel HAC	\C-(T) 70
nces unde HAC-30 23,7 10,2 en anchor	HAC-4 39,6 18,4	d – steel 40 H	failure of an AC-(T) 50 53,6 29.0	nchor cha HAC-6 77,3	nnel HAC	AC-(T) 70
HAC-30 23,7 10,2 en anchor	HAC-4 39,6 18,4	40 H	AC-(T) 50 53,6 29.0	HAC-6	50 HA	AC-(T) 70
23,7 10,2 en anchor	39,6		53,6	77,3	,	111.0
23,7 10,2 en anchor	39,6		53,6 29.0	77,3		111.0
10,2 en anchor	18,4		29.0			114,8
en anchor	·		,-	29,0	1	41,9
en anchor			1,5	•	·	
	and chann	el				
23,7	39,6		53,6	77,3		114,8
9,1	12,5		17,5	25,1		35,5
			1,8			
annel lips	under she	ar load p	erpendicula	r to the lo	ongitudina	l axis of
83	82		84	87		91
23,7	34,9		47,5	72,2		95,8
			1,8			
ations. ith chann	el bolts (F	IBC)				
	lations. ith chann	lations. ith channel bolts (H	lations. ith channel bolts (HBC)	1,8 lations. ith channel bolts (HBC)	1,8 lations. ith channel bolts (HBC)	1,8 lations. ith channel bolts (HBC)

Anchor channel		HAC-V-T 30	HAC-V 35 HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70
Steel failure: Anch	or		I					
Characteristic	V _{Rk,s,a,y} [kN]	26,9	42,5	57,5	57,9	82,9	116,5	114,8
static resistance	V _{Rk,s,a,x} [kN]	9,1	15,7	27,5	27,5	25,5	37,5	37,5
Partial factor	γMs ¹⁾		·		1,5		·	
Steel failure: Conn	ection bet	ween anch	or and cha	nnel				
Characteristic	V _{Rk,s,c,y} [kN]	26,9	42,5	57,5	57,9	82,9	116,5	114,8
static resistance	V _{Rk,s,c,x} [kN]	9,1	15,7	27,5	27,5	25,5	37,5	37,5
Partial factor	γMs,ca ¹⁾				1,8			1
Steel failure: Local the c	l flexure o hannel	f channel li	ips under s	hear load	perpendicu	llar to the	longitudina	al axis of
Characteristic spacing of channel bolts for V _{Rk,s,l}	s _{i,V} [mm]	83	82	84	84	87	ç)1
Characteristic static resistance	V ⁰ _{Rk,s,l,y} [kN]	27,7	37,4	55,0	60,5	82,9	102,9	118,8
Partial factor	γ _{Ms,I} 1)				1,8			
[,] In absence of other	national re	egulations.						

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC-V) under shear load – steel failure

Anc	hor cha	nnel		HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T7 HAC-V- 70
Stee	el failure	: Conn	ection k	between cl	hannel lip	os and ch	annel bol	t			
		HB0 M12	C-B 4.6	3,5		_ 1)			-	1)	
JCe		HBC- M12	-C-N 8.8		8,5	8,5	8,5	_ 1)	8,5	8,5	1)
esistar		HBC- M16	-C-N 8.8		19,7	19,7	19,7		19,7	19,7	
eristic r	V _{Rk,s,l,x} [kN]	HBC- M20	-C-N 8.8	_ 1)	_ 1)	_ 1)	24,1		24,1 24,		
naracte		HB0 M12	C-T 8.8					15,1	_		15,1
ò		HB0 M16	C-T 8.8		_ 1)	_ 1)	_ 1)	20,1	_ 1)	_ 1)	20,1
		HB0 M20	C-T 8.8					20,1			20,1
Insta facto	allation or	γir	ist		1,4	4		1,2	1	,4	1,2
¹⁾ No able	o perforn 25: Cha	nance a racteri	ssessec stic res	d istances ι	under she	ar load –	concrete	failure			
¹⁾ No able	b perforn 25: Cha hor cha	nance a aracteri nnel	ssessec stic res	istances ι HAC-30 HAC-V-T 30	Inder she HAC-\ 35	ear load – / HAC HAC 40	concrete -40 -V HAC	failure -V(-T) HA 50 HA	C-(T)50 C-V(-T) 50	HAC-60 HAC-V 60	HAC-(T)7 HAC-V(- ⁻ 70
¹⁾ No able Anc	o perform 25: Cha hor chai crete fai	nance a aracteri nnel lure: Pi	ssessec stic res ry out fa	istances u HAC-30 HAC-V-T 30 ailure	HAC-\ 35	ear load – / HAC HAC 40	-40 V HAC	failure -V(-T) HA 50 HA	C-(T)50 C-V(-T) 50	HAC-60 HAC-V 60	HAC-(T)7 HAC-V(- ⁻ 70
¹⁾ No able Anc Con	o perforn 25: Cha hor chai crete fai	nance a aracteri nnel lure: Pr	ssessec stic res ry out fa k8	istances u HAC-30 HAC-V-T 30 ailure	HAC-\ 35	ear load – / HAC HAC 40	-40 V HAC	failure V(-T) HA 50 HA 2,0	C-(T)50 C-V(-T) 50	HAC-60 HAC-V 60	HAC-(T)7 HAC-V(- ⁻ 70
¹⁾ No able Ancl Con Prod Parti	b perform 25: Cha hor chan crete fai luct factor ial factor	nance a aracteri nnel lure: Pr	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾	istances u HAC-30 HAC-V-T 30 ailure	HAC-\ 35	ear load – / HAC HAC 40	-40 V HAC	failure V(-T) HA HA 2,0 1,5	C-(T)50 C-V(-T) 50	HAC-60 HAC-V 60	HAC-(T)7 HAC-V(- 70
¹⁾ No able Anc Con Prod Parti Con	b perform 25: Cha hor chan crete fai luct factor ial factor crete fai	nance a aracteri nnel lure: Pr	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾	HAC-30 HAC-V-T 30 ailure edge failu	under she HAC-\ 35	ear load – / HAC HAC 40	Concrete -40 V HAC	failure V(-T) HA HA 2 ,0 1,5	C-(T)50 C-V(-T) 50	HAC-60 HAC-V 60	HAC-(T)7 HAC-V(- ⁻ 70
¹⁾ No able Ancl Con Prod Parti Con Min. emb	b perform 25: Cha hor chan crete fai luct factor ial factor crete fai effective edment	nance a aracteri nnel lure: Pr or lure: Co depth	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾ oncrete h _{ef} [mm]	HAC-30 HAC-V-T 30 ailure edge failu	under she HAC-\ 35 ure 91	ear load – / HAC HAC 40	Concrete -40 V HAC	failure V(-T) 50 2,0 1,5 71	C-(T)50 C-V(-T) 50 106	HAC-60 HAC-V 60 149/183	HAC-(T)7 HAC-V(- ⁻ 70 175/295
¹⁾ No able Anc Con Prod Min. Produ	b perform 25: Cha hor chan crete fai luct factor crete fai effective edment of crac uct cond	nance a aracteri nnel lure: Pr or lure: Co depth ked crete	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾ oncrete [mm] k _{cr,V}	HAC-30 HAC-V-T 30 ailure edge failu 68 7,5	Inder she HAC-\ 35 Jre 91 7,5	ear load - / HAC 40 91/1 7,5	concrete -40 HAC 10	failure V(-T) 50 2,0 1,5 71	C-(T)50 C-V(-T) 50 106 7,5	HAC-60 HAC-V 60 149/183 7,5	HAC-(T)7 HAC-V(- 70 175/295 7,5
¹⁾ No able Anc Con Prod Parti Con Min. emb	A perform 25: Cha hor chan crete fai luct factor crete fai effective edment of crac uncr cond r	ance a aracteri nnel lure: Pro or lure: Co depth ked crete cacked crete	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾ oncrete [mm] k _{cr,V}	e edge failu 68 7,5 10,5	under she HAC-\ 35 ure 91 7,5 10,5	ear load – / HAC / HAC 40 91/1 7,5 10,	concrete -V HAC 10 5 6	failure Image: space state	C-(T)50 C-V(-T) 50 106 7,5 10,5	HAC-60 HAC-V 60 149/183 7,5 10,5	HAC-(T)7 HAC-V(- ⁻ 70 175/295 7,5 10,5
¹⁾ No able Anc Con Prod Parti Con Min. emb Produ Sactor	b perform 25: Cha hor chan crete fai luct factor ial factor crete fai effective edment of crac uncr cond r uncr cond ial factor	ance a aracteri nnel lure: Pro- or lure: Co- e depth ked crete cacked crete	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾ oncrete [mm] k _{cr,V} k _{ucr,V}	e edge failu 68 7,5 10,5	under she HAC-\ 35 ure 91 7,5 10,5	ear load – / HAC / HAC 40 91/1 7,5 10,	concrete -V HAC -V 10 5 6	failure V(-T) HA HA 2,0 1,5 71 1,5 5,3 1,5	C-(T)50 C-V(-T) 50 106 7,5 10,5	HAC-60 HAC-V 60 149/183 7,5 10,5	HAC-(T)7 HAC-V(- 70 175/295 7,5 10,5
¹⁾ No able Ancl Con Prod Parti Con Min. emb Produ Sactol Sact	b perform 25: Cha hor chan crete fai luct factor crete fai effective edment of crac uncr cond ial factor bsence of	nance a aracteri nnel lure: Pr or lure: Co depth ked crete crete	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾ oncrete h _{ef} [mm] k _{cr,V} k _{ucr,V} γ _{Mc} ¹⁾ national	HAC-30 HAC-V-T 30 ailure e edge failu 68 7,5 10,5	under she HAC-\ 35 Jre 91 7,5 10,5	ear load – / HAC / HAC 40 91/1 7,5 10,	concrete 40 HAC -V 10 5 6	failure F-V(-T) HA HA 2,0	C-(T)50 C-V(-T) 50 106 7,5 10,5	HAC-60 HAC-V 60 149/183 7,5 10,5	HAC-(T)7 HAC-V(- 70 175/295 7,5 10,5
¹⁾ No able Ancl Con Prod Parti Con Min. emb Produ Sactor S12 Parti	b perform 25: Cha hor chan crete fai luct factor ial factor crete fai effective edment of uncr cond r uncr cond ial factor bsence of anchor	nance a aracteri nnel lure: Pro- or lure: Co- depth ked crete cacked crete	ssessec stic res ry out fa k ₈ γ _{Mc} ¹⁾ oncrete [mm] k _{cr,V} k _{ucr,V} γ _{Mc} ¹⁾ national	HAC-30 HAC-V-T 30 ailure e edge failu 68 7,5 10,5 1 regulation	under she HAC-\ 35 Jre 91 7,5 10,5 Is	ear load – / HAC 40 91/1 7,5 10, holts (HF	concrete 40 HAC -V HAC 10 - 5 6 3C) -	failure F-V(-T) HA 50 HA 2,0 1,5 71	C-(T)50 C-V(-T) 50 106 7,5 10,5	HAC-60 HAC-V 60 149/183 7,5 10,5	HAC-(T) HAC-V(- 70 175/29 7,5 10,5

Table 26: Displ	Table 26: Displacements under shear load perpendicular to longitudinal axis of the channel												
Anchor channel		HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70				
Shear load	V _y [kN]	8,0	13,9	13,9	18,9	21,0	29,0	38,0	45,6				
Short-term displacement ¹⁾	δ _{V,y,0} [mm]	1,0	1,0	1,0	1,5	2,7	1,5	1,5	2,4				
Long-term displacement ¹⁾	δ _{∨,y,∞} [mm]	1,5	1,5	1,5	2,3	4,1	2,3	2,3	3,6				

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

Table 27: Displacements under shear load in direction of the longitudinal axis of the channel

Anchor cha	nnel		HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70
Channel bo	lt		НВС-В		HBC-C-N		НВС-Т	HBC-C-N		НВС-Т
		M12	1,4		3,4		6,7	3	,4	6,7
Shear load		M16	2)		7,8		8,9	7	,8	8,9
		M20	/	_2)		9,6	8,9	8,9 9,6		8,9
Short-term		M12	0,1		0,05		1,4	0,	05	1,4
dis-	0V,x,0	M16	2)		0,4		1,7	0	,4	1,7
placement 1)	[]	M20	/	_ 2)		0,1	1,7	0	,1	1,7
Short-term		M12	0,2		0,1		2,1	0	,1	2,1
dis-	ð∨,x,∞ Imml	M16	2)		0,6		2,5	0	,6	2,5
placement 1)	[[]	M20	/	_ 2)		0,2	2,5	0,2		2,5

¹⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip

of the anchor channel in concrete.

²⁾ No performance assessed

Table 28: Characteristic resistances under combined tension and shear load

Anchor channe	I	HAC-30 HAC-V-T 30	HAC-V 35	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70				
Steel failure: Lo	cal fle	xure of cha	nnel lips	and flexu	re of char	nnel				
Product factor	, Section 7	'.4.3.1								
Steel failure: Ar	nchor	and connec	tion betw	veen anch	or and ch	annel				
Product factor	k 14		Value	s accordir	ng to EN 19	992-4: 2018	, Section 7	'.4.3.1		
Hilti anchor cha	nnels	; (HAC) wit	h chann	el bolts ((HBC)					
Hilti anchor channels (HAC) with channel bolts (HBC) Annex C8 Performance Annex C8 Displacements under shear load. Annex C8										

Characteristic resistances under combined tension and shear load

Channel bolt d	iameter	M10	M12	M16	M20						
Steel failure						•					
				4.6	23,2	33,7	_ 4)	_ 4)			
			НВС-В	A4-50 ¹⁾	29,0	42,2	_ 4)	_ 4)			
	eristic ce N _{Rk,s} ²⁾			4.6	23,2	33,7	62,8	98,0			
Characteristic resistance		[kN]	HBC-C HBC-C-F	8.8	46,4	67,4	125,6	174,3			
				A4-50 ¹⁾	29,0	42,2	78,5	122,5			
				HBC-C-N	8.8	_ 4)	67,4	125,6	174,3		
			HBC-T	8.8	_ 4)	67,4	125,6	177,4			
			4.6			2	,0				
Partial factor			γ Ms $^{3)}$	8.8		1	,5				
				A4-50 ¹⁾	2,86						
							4.6	13,9	20,2	- 4)	_ 4)
			HBC-B	A4-50 ¹⁾	17,4	25,3	_ 4)	_ 4)			
				4.6	13,9	20,2	37,7	58,8			
Characteristic resistance	V _{Rk,s} ²⁾	[kN]	HBC-C HBC-C-F	8.8	23,2	33,7	62,8	101,7			
				A4-50 ¹⁾	17,4	25,3	47,1	73,5			
			HBC-C-N	8.8	_ 4)	33,7	62,8	101,7			
			HBC-T	8.8	_ 4)	33,7	62,8	101,7			
				4.6		1,	67				
Partial factor			γ Ms $^{3)}$	8.8		1,25		1,5			
				A4-50 ¹⁾		2,	38				

¹⁾ Materials according to Table 5, Annex A5

²⁾ In conformity with EN ISO 898-1:2013

³⁾ In absence of other national regulations

⁴⁾ No performance assessed

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under tension and shear load

A		,						
Channel bolt dia	ameter				M10	M12	M16	M20
Steel failure		I						
				4.6	29,9	52,4	- ³⁾	_ 3)
			пвс-в	A4-50 ¹⁾	37,4	65,5	_ ³⁾	_ 3)
Characteristic			HBC-C HBC-C-E	4.6	29,9	52,4	133,2	259,6
flexure	M ⁰ Rk,s ³⁾	[Nm]		8.8	59,8	104,8	266,4	538,7
resistance				A4-50 ¹⁾	37,4	65,5	166,5	324,5
			HBC-C-N	8.8	_ 3)	104,8	266,4	538,7
			HBC-T	8.8	_ 3)	104,8	266,4	538,7
	·			4.6	1,67			
Partial factor		γMs ²⁾		8.8	1,25			
				A4-50 ¹⁾		2	2,38	
			НВС-В	4.6, A4-50	25	27	_ 3)	_ 3)
Internal lever arm	а	[mm]	HBC-C HBC-C-E	4.6, 8.8, A4-50	24	26	28	30
	a	HBC-C-N	HBC-C-N	8.8	_ 3))	26	28	30
			HBC-T	8.8	_ 3)	26	28	30

¹⁾ Materials according to Table 5, Annex A5.

²⁾ In absence of other national regulations.

³⁾ No performance assessed

3) Th	e characteristic flexure	resistance	according	to	Table 2	3 is
lim	ited as follows:					

 $M^{0}_{Rk,s} \leq 0.5 \cdot N_{Rk,s,l}$ a (N_{Rk,s,l} according to Table 15 and 17)

and

 $M^{0}_{Rk,s} \leq 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 29)

a = internal lever arm according Table 30

Ts = tension force acting on the channel lips

Cs = compression force acting on the channel lips

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under shear load with lever arm

Table 31: Combination of anchor channels and channel bolts under fatigue tension load (Design
method I or II for test method A1 and A2 according to EOTA TR050, October 2018)

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion protection
HAC-30		M10	4.6	
HAC-V-T 30	пьс-в	M12	4.0	
HAC-V 35		M12	4.6	
HAC-40		M16	1.0	
HAC-V 40		M20	8.8	G ¹⁾
HAC-50		M16	4.6	
HAC-V 50	НВС-С	M20	8.8	F ²⁾
HAC-60		M16	4.6	
HAC-V 60		M20	8.8	
HAC-70		MOO	4.6	
HAC-V 70		IVIZU	8.8	

¹⁾ Electroplated

²⁾ Hot-dip galvanized

Table 32: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR050, October 2018)

Anchor channel	HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70			
Steel failure	n	ΔN _{Rk,s,0,n} [kN]							
	≤ 10 ⁶	1,76	1,57	1,57	2,66	3,54	6,44		
Characteristic	≤ 3·10 ⁶								
resistances under	≤ 10 ⁷	1,60	1,50	1,50	2,60	3,50	6,40		
fatigue tension load	≤ 3·10 ⁷								
without static preioad	≤ 6·10 ⁷								
	> 6·10 ⁷								

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances under fatigue cyclic tension load according to test method A1 and A2

Table 33: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{Ed} = 0) (Design method I or II for test method A1 and A2 according to EOTA TR050, October 2018)

Anchor channel		HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70		
Pull-out failure Concrete cone failure	n	η _{c,fat} [-]							
Reduction factor for	≤ 10 ⁶	0,600							
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 3·10 ⁶	0,571							
$\Delta \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{c};0;\mathbf{n}} = \eta_{\mathbf{c},fat} \cdot \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{c}}$	≤ 10 ⁷	0,542							
Annex C3 and C4 and	≤ 3·10 ⁷	0,516							
$N_{Rk,c}$ calculated according to EOTA TR 047 March 2018	≤ 6·10 ⁷			0.5	:00				
or EN 1992-4: 2018	> 6·10 ⁷	0,500							

Table 34: Characteristic resistances under fatigue tension load with n → ∞ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR050, October 2018)

Anchor channel	HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	
Steel failure							
$\Delta N_{Rk,s;0;\infty}$	[kN]	1,6	1,5	1,5	2,6	3,5	6,4
Concrete cone and pull-out f	ailure						
η _{c,fat}	[-]			0,	5		

For the reduction of the characteristic resistances given in Tables 32 and 33 in the transition zone from the static resistance to the fatigue limit resistance the partial safety factors are calculated as follows:

 $\gamma_{M,\text{fat},n} = \gamma_{M,\text{fat}} + (\gamma_M - \gamma_{M,\text{fat}}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$

In absence of other national regulations, the following safety factors γ_M and $\gamma_{M,fat}$ are recommended for design method I according to EOTA TR 050, October 2018:

 γ_M according Annex C1

γ_{M,fat} = 1,35

In absence of other national regulations, the following safety factor $\gamma_{M,fat}$ is recommended for design method II (Table 34) according to EOTA TR 050, October 2018:

 $\gamma_{M,fat} = 1,35$

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances under fatigue cyclic tension load according to test method A1 and A2

Page 35 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Table 35: Combination of anchor channels and channel bolts under seismic load (performance category C1)

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion protection
HAC-V-T 30	HBC-B	M12	4.6	
HAC-V 35		M12		
HAC-V 40		M16		
HAC-V 50	HBC-C-N	M12		
HAC-V 60		M16	4.6	G
HAC-V-T 70		M20	8.8	F ²⁾
		M12		
HAC-V-T 50 HAC-V-T 70	HBC-T	M16		
		M20		

¹⁾ Electroplated

²⁾ Hot-dip galvanized

Table 36: Characteristic resistances under seismic tension load – steel failure of anchor channel HAC-V

Anchor channel		HAC-V-T	HAC-V	HAC-V	HAC-V	HAC-V-T	HAC-V	HAC-V	HAC-V-T
		30	35	40	50	50	60	70	70
Steel failure: Anch	or								
Characteristic resistance	N _{Rk,s,a,eq} [kN]	18,2	31,4	31,4	5	5,0	55,0	75,0	
Partial factor	$\gamma_{Ms,eq}$ 1)		1,8						
Steel failure: Conn	ection be	tween anc	hor and c	hannel					
Characteristic resistance	N _{Rk,s,c,eq} [kN]	18,2	31,4	31,4	40,0	42,0	40,0	71,0	75,0
Partial factor	$\gamma_{Ms,ca,eq}$ ¹⁾				1,8				
Steel failure: Local	flexure o	f channel	lips						
Characteristic resistance	N ⁰ _{Rk,s,l,eq} [kN]	19,9	31,4	31,4	40,0	41,0	40,0	7	1,0
Partial factor	$\gamma_{Ms,l,eq}$ 1)				1,8				
¹⁾ In absence of other	national r	egulations.							

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channel under seismic tension load (performance category C1)

Anchor c	hannel		HAC-V-T 30	HAC-V 35	HAC-V 40	HAC	-V HAC	с-V-Т 60	HAC-\ 60	/ HAC-V 70	
Steel fail	ure: Flexu	e of chanr	nel							•	
ural inel		HBC-B	786	- ²⁾	_ 2)	_ 2) _	2)	- ²⁾	_ 2)	_
: flexi chan		НВС-С	- ²⁾	1318	1318	185	3 -	2)	2538	3668	-
ristic e of	MRk,s,flex,eq	HBC-C-E	_ 2)	1318	1318	185	- 33	2)	_ 2)	_ 2)	-
racte stanc		HBC-C-N	- ²⁾	1137	1137	155	51 -	2)	2503	3488	
Chai resis		НВС-Т	_ 2)	_ 2)	_ 2)	_ 2) 18	53	_ 2)	_ 2)	34
Partial fac	ctor	$\gamma_{Ms,flex,eq}$ ¹⁾					1,15				
Table 38: (Characteri	stic resista	INCES UND	er seisn HAC-V	nic shea 35 HA	ar load	– steel f	ailure H/	of ancl	hor chann HAC-V	el HA
Anchor c	nannei		30	HAC-V	40 !	50	50		60	70	70
Steel fail	ure: Ancho	or									
Character	ristic	V _{Rk,s,a,y,eq} [kN]	26,9	42,5	5	7,5	57,9	5	57,5	116,5	114
resistance	e	V _{Rk,s,a,x,eq} [kN]	9,1	15,7	2	7,5	27,5	2	25,5	37,5	37,
Partial fac	ctor	γ Ms,eq ¹⁾					1,5				
Steel fail	ure: Conne	ection betv	veen anch	or and o	channel						
Character	ristic	V _{Rk,s,c,y,eq} [kN]	26,9	42,5	5	7,5	57,9	5	57,5	116,5	114
resistance	e	V _{Rk,s,c,x,eq} [kN]	9,1	15,7	2	7,5	27,5	2	25,5	37,5	37,
Partial fac	ctor	γ Ms,ca,eq ¹⁾					1,8				
Steel fail	ure: Local the ch	flexure of annel	channel li	ps unde	r shear	load p	erpendio	ular	to the lo	ongitudina	l axis
Character resistance	ristic Ə	V ⁰ _{Rk,s,l,y,eq} [kN]	27,7	37,4	5	5,0	60,5	5	55,0	102,9	118
Partial fac	ctor	$\gamma_{ m Ms,I}$, eq $^{1)}$					1,8				
⁾ In absend	ce of other	national reç	gulations.								
lilti anch	or channe	els (HAC)	with cha	nnel bo	olts (HE	BC)					

And	chor chan	nel	HAC-V-T	HAC-V	HAC-V-T	HAC-V	HAC-V	HAC-V-T	
Sto	ol failura:	Connection	30 between ch	50 +	60	70	70		
Ole	er ranure.	HBC-B M12 4.6	3,5	_ 1)	- ¹⁾			1)	
0		HBC-C-N M12 8.8		8,5	8,5		8,5	8,5	
sistance		HBC-C-N M16 8.8		19,7	19,7		19,7	19,7	
ristic re:	V _{Rk,s,l,x,eq} [kN]	HBC-C-N M20 8.8	1)	_ 1)	24,1		24,1	24,1	
Jaracte		HBC-T M12 8.8	//			15,1			15,1
Ū	Cha	HBC-T M16 8.8		_ 1)	_ 1)	20,1	_ 1)	_ 1)	20,1
		HBC-T M20 8.8				20,1			20,1
Installation factor ^{γinst,eq}			1,4		1,2	1,	4	1,2	

¹⁾ No performance assessed.

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channel under seismic shear load in direction of the longitudinal axis of the channel (performance category C1)

Table 40: Characteristic resistances under seismic tension and seismic shear load – steel failure of Hilti channel bolts HBC-B, HBC-C-N and HBC-T

Channel bolt dia	meter				M12	M16	M20	
Steel failure								
			НВС-В	4.6	33,7	_ 3)	_ 3)	
Characteristic	N _{Rk,s,eq} 1)	[kN]	HBC-C-N	8.8	67,4	125,6	174,3	
			НВС-Т	8.8	67,4	125,6	177,4	
				4.6	2,0		_ 3)	
Partial factor		°¥Ms,eq [™]		8.8		1,5		
				НВС-В	4.6	20,2	_ 3)	_ 3)
Characteristic	V _{Rk,s,eq} 1)	[kN]	HBC-C-N	8.8	33,7	62,8	101,7	
			HBC-T	8.8	33,7	62,8	101,7	
Partial factor				4.6	1,67		_ 3)	
			γMs,eq [−] /	8.8	1,:	25	1,5	

¹⁾ In conformity with EN ISO 898-1:2013

²⁾ In absence of other national regulations

³⁾ No performance assessed

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under seismic tension and seismic shear load (performance category C1)

Channel bolt					M10	M12	M16	M20
Steel failure of an	chor, connectior	ı betweeı	n anchor	and ch	annel, loca	al flexure of	channel lip	ט
	HAC-30 HAC-V-T 30	R60	$N_{Rk,s,fi}$ = $V_{Rk,s,fi}$	[KN]	1,3	1,8	_ 2)	_ 2)
		R90			0,9	1,1		
		R120			0,7	0,8		
	HAC-V 35	R60			1,7	2,4	2,4	2,4
		R90			1,3	1,8	1,8	1,8
		R120			1,0	1,5	1,5	1,5
	HAC-40 HAC-V 40	R60			1,7	2,4	2,4	2,4
Characteristic resistance under fire exposure		R90			1,3	1,8	1,8	1,8
		R120			1,0	1,5	1,5	1,5
	HAC-50 HAC-V 50	R60			1,7	2,4	4,0	4,0
		R90			1,3	1,8	2,4	2,4
		R120			1,0	1,5	1,6	1,6
	HAC-60 HAC-V 60	R60			1,7	2,4	4,0	4,7
		R90			1,3	1,8	2,4	3,0
		R120			1,0	1,5	1,6	2,1
	HAC-70 HAC-V 70	R60			1,7	2,4	4,0	4,7
		R90			1,3	1,8	2,4	3,0
		R120			1,0	1,5	1,6	2,1
Partial safety factor			γ _{Ms,fi} ¹⁾	[-]	1,0			

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Page 40 of European Technical Assessment ETA-11/0006 of 24 October 2022

English translation prepared by DIBt

Table 42: Minimum axis distance									
Anchor cha	annel			HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70
Min. axis distance	R60			35	35	35	50	50	50
	R90	а	[mm]	45	45	45			
	R120			60	60	60	60	65	70

Fire exposure from one side only

Fire exposure from more than one side

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Attn. : To whom it may concern

 Date
 : 1 April 2025

 Ref.
 : 051/AN/SC/25

Subject : Country of Origin – Hilti HAC-V Anchor Channel

Dear Sir / Madam,

Enclosed please find the information of Hilti HAC-V Anchor Channel.

Brand Name	: Hilti

Model Name : Hilti HAC-V 40/ HAC-V 50/ HAC-V 60/ HAC-V 70

Manufacturer : Hilti Corporation

Address of Manufacturer : FL-9494, Principality of Liechtenstein.

Manufacturer Contact Person : Spencer Cheung

Supplier : Hilti (Hong Kong) Ltd

Address of Supplier : 701-704, 7/F, Tower A, Manulife Financial Centre, 223 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

Supplier Contact Person : Spencer Cheung (+852 9732 1231)

Country of Origin : Germany

Should you have further questions, please do not hesitate to contact our Technical Representatives, Customer Service Hotline at 8228-8118, or email us at hksales@hilti.com.

Yours faithfully,

Spencer C.

Spencer Chung Head of Product Leadership Strategy

Hilti (Hong Kong) Ltd. 701-704 | Tower A | Manulife Financial Centre 223 Wai Yip Street | Kwun Tong Kowloon | Hong Kong P +852-8228 8118 | F +852-2954 1751 www.hilti.com.hk

Attn. : To whom it may concern

 Date
 : 1 April 2025

 Ref.
 : 021/AN/SC/25

Subject : Country of Origin – Hilti HBC T-Head Bolt

Dear Sir / Madam,

Enclosed please find the information of Hilti HBC T-Head Bolt.

Brand Name : Hilti

- Model Name : Hilti HBC/ HBC A4/ HBC-C/ HBC-C-N/ HBC-N T-Head Bolts
- Manufacturer : Hilti Corporation

Address of Manufacturer : FL-9494, Principality of Liechtenstein.

Manufacturer Contact Person : Spencer Cheung

Supplier : Hilti (Hong Kong) Ltd

Address of Supplier : 701-704, 7/F, Tower A, Manulife Financial Centre, 223 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

Supplier Contact Person : Spencer Cheung (+852 9732 1231)

Country of Origin : Taiwan

Should you have further questions, please do not hesitate to contact our Technical Representatives, Customer Service Hotline at 8228-8118, or email us at hksales@hilti.com.

Yours faithfully,

Spencer C.

Spencer Cheung Head of Product Leadership Strategy

Hilti (Hong Kong) Ltd. 701-704 | Tower A | Manulife Financial Centre 223 Wai Yip Street | Kwun Tong Kowloon | Hong Kong P +852-8228 8118 | F +852-2954 1751 www.hilti.com.hk

Hilti HAC-V Job Reference

Year	Project Name	Customer Name	Project type
2023	121-131 SHAU KEI WAN MAIN ST EAST	SI-O ENGINEERING COMPANY LIMITED	Residential
2023	5-9 WAI FUNG STREET	POLYWIN ALUMINIUM LIMITED	Residential
2024	121-131 SHAU KEI WAN MAIN ST EAST	SI-O ENGINEERING COMPANY LIMITED	Residential
2024	5-9 WAI FUNG STREET	POLYWIN ALUMINIUM LIMITED	Residential
2024	MING FUNG STREET	WAH KEE (R&M) LIMITED	Residential
2024	LARCH STREET	POLYWIN ALUMINIUM LIMITED	Residential